Why are the Solutions to Overdetermined Problems Usually “As Symmetric as Possible”?

Author:

Cavallina LorenzoORCID

Abstract

AbstractIn this paper, we study the symmetry properties of nondegenerate critical points of shape functionals using the implicit function theorem. We show that, if a shape functional is invariant with respect to some one-parameter group of rotations, then its nondegenerate critical points (bounded open sets with smooth enough boundary) share the same symmetries. We also consider the case where the shape functional exhibits translational invariance in addition to just rotational invariance. Finally, we study the applications of this result to the theory of one/two-phase overdetermined problems of Serrin-type. En passant, we give a simple proof of the fact that, under suitable smoothness assumptions, the ball is the only nondegenerate critical point of the Lagrangian associated to the maximization problem for the torsional rigidity under a volume constraint. We remark that the proof does not rely on either the method of moving planes or rearrangement techniques.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3