Abstract
AbstractWe define the notions of $$B_{n}$$
B
n
-generalized pseudo-Hermitian and $$B_{n}$$
B
n
-generalized pseudo-Kähler structure on an odd exact Courant algebroid E. When E is in the standard form (or of type $$B_{n}$$
B
n
) we express these notions in terms of classical tensor fields on the base of E. This is analogous to the bi-Hermitian viewpoint on generalized Kähler structures on exact Courant algebroids. We describe left-invariant $$B_{n}$$
B
n
-generalized pseudo-Kähler structures on Courant algebroids of type $$B_{n}$$
B
n
over Lie groups of dimension two, three and four.
Funder
Deutsche Forschungsgemeinschaft
UE - FISCDI
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Baraglia, D., Hekmati, P.: Transitive Courant algebroids, String structures and $$T$$-duality. Adv. Theor. Math. Phys. 19(3), 613–672 (2015)
2. Bressler, P.: The first Pontryagin class. Compos. Math. 143(5), 1127–1163 (2007)
3. Chen, Z., Stiénon, M., Xu, P.: On regular Courant algebroids. J. Sympl. Geom. 11(1), 1–24 (2013)
4. Cortés, V., David, L.: Generalized connections, spinors and integrability of generalized structures on Courant algebroids. Moscow Math. J. 21(4), 695–736 (2021)
5. Cortés, V., David, L.: $$T$$-duality for transitive Courant algebroids, to appear in J. Sympl. Geom. 21 (4) (2023); arXiv:2101.07184 [math.DG]