Abstract
AbstractWe study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers $$(b_n)_{n\ge 1}$$
(
b
n
)
n
≥
1
and points of the real line $$(k_n)_{n\ge 1}$$
(
k
n
)
n
≥
1
, we explicitily solve the Loewner PDE $$\begin{aligned} \dfrac{\partial f}{\partial t}(z,t)=-f'(z,t)\sum _{n=1}^{+\infty }\dfrac{2b_n}{z-k_n\sqrt{1-t}} \end{aligned}$$
∂
f
∂
t
(
z
,
t
)
=
-
f
′
(
z
,
t
)
∑
n
=
1
+
∞
2
b
n
z
-
k
n
1
-
t
in $$\mathbb {H}\times [0,1)$$
H
×
[
0
,
1
)
. Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as $$t\rightarrow 1^-$$
t
→
1
-
.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Springer Monographs in Mathematics;F Bracci,2020
2. Carathéodory, C.: Theory of Functions of a Complex Variable, vol. I. Chelsea Publishing Company, New York (1954)
3. del Monaco, A., Gumenyuk, P.: Chordal Loewner equation, Complex analysis and dynamical systems VI. Part 2, 63–77, Contemp. Math., 667, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI (2016)
4. Duren, P.L.: Univalent Functions. Springer-Verlag, New York (1983)
5. Kager, W., Nienhuis, B., Kadanoff, L.P.: Exact solutions for Loewner evolutions. J. Stat. Phys. 115(3–4), 805–822 (2004)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献