Abstract
AbstractIn this article, we consider a complete, non-compact almost Hermitian manifold whose curvature is asymptotic to that of the complex hyperbolic space. Under natural geometric conditions, we show that such a manifold arises as the interior of a compact almost complex manifold whose boundary is a strictly pseudoconvex CR manifold. Moreover, the geometric structure of the boundary can be recovered by analysing the expansion of the metric near infinity.
Funder
Royal Institute of Technology
Publisher
Springer Science and Business Media LLC