Author:
Górka Przemysław,Karak Nijjwal,Pons Daniel J.
Abstract
AbstractWe study the embeddings of variable exponent Sobolev and Hölder function spaces over Euclidean domains, providing necessary and/or sufficient conditions on the regularity of the exponent and/or the domain in various contexts. Concerning the exponent, the relevant condition is log-Hölder continuity; concerning the domain, the relevant condition is the measure density condition.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Adams, R.A., Fournier, J.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2005)
2. Almeida, A., Samko, S.: Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend. 26, 179–193 (2007)
3. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces (Foundations and Harmonic Analysis), Birkhäuser (2013)
4. Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $${L^{{p( \cdot )}}}$$ and $${W^{k,{p( \cdot )}}}$$. Math. Nach. 268, 31–43 (2004)
5. Lecture Notes in Mathematics;L Diening,2011
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献