Minimally Immersed Klein Bottles in the Unit Tangent Bundle of the Unit 2-Sphere Arising from Area-Minimizing Unit Vector Fields on $${\mathbb {S}}^2\backslash \{N,S\}$$

Author:

Brito Fabiano,Conrado JackelineORCID,Gonçalves Icaro,Nicoli Adriana,Nunes Giovanni

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference14 articles.

1. Borrelli, V., Gil-Medrano, O.: Area-minimizing vector fields on round 2-spheres. J. Reine Angew. Math. 640, 85–99 (2010)

2. Brito, F.G.B., Chacón, P.M., Johnson, D.L.: Unit vector fields on antipodally punctured spheres: big index, big volume. Bull. Soc. Math. France 136(1), 147–157 (2008)

3. Brito, F.G.B., Gomes, A., Gonçalves, I.: Poincaré index and the volume functional of unit vector fields on punctured spheres. Manuscr. Math. 161(3–4), 487–499 (2019)

4. Brito, F.G.B., Conrado, J., Gonçalves, I., Nicoli, A.V.: Area minimizing unit vector fields on antipodally punctured unit 2-sphere. Comptes Rendus Mathématique 359–10, 1225–1232 (2021)

5. Conrado, J.: Minimally immersed surfaces in the unit tangent bundle of round 2-sphere arising from area-minimizing unit vector fields on $$\mathbb{S}^{2}\backslash \{\pm p\}$$, Phd thesis of the University of São Paulo. Phd thesis of University of São Paulo (2022)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vector Fields of Constant Length on Punctured Spheres;The Volume of Vector Fields on Riemannian Manifolds;2023

2. The Volume of Vector Fields on Riemannian Manifolds;Lecture Notes in Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3