Stability of the Non-abelian X-ray Transform in Dimension $$\ge 3$$

Author:

Bohr JanORCID

Abstract

AbstractNon-abelian X-ray tomography seeks to recover a matrix potential $$\Phi :M\rightarrow {\mathbb {C}}^{m\times m}$$ Φ : M C m × m in a domain M from measurements of its so-called scattering data $$C_\Phi $$ C Φ at $$\partial M$$ M . For $$\dim M\ge 3$$ dim M 3 (and under appropriate convexity and regularity conditions), injectivity of the forward map $$\Phi \mapsto C_\Phi $$ Φ C Φ was established in (Paternain et al. in Am J Math 141(6):1707–1750, 2019). The present article extends this result by proving a Hölder-type stability estimate. As an application, a statistical consistency result for $$\dim M =2$$ dim M = 2 (Monard et al. in Commun Pure Appl Math, 2019) is generalised to higher dimensions. The injectivity proof in (Paternain et al. in Am J Math 141(6):1707–1750, 2019) relies on a novel method by Uhlmann and Vasy (Invent Math 205(1):83–120, 2016), which first establishes injectivity in a shallow layer below $$\partial M$$ M and then globalises this by a layer stripping argument. The main technical contribution of this paper is a more quantitative version of these arguments, in particular, proving uniform bounds on layer depth and stability constants.

Funder

Munro-Greaves Bursary for Pure Mathematics

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability estimates for the holonomy inverse problem;Communications in Partial Differential Equations;2024-05-27

2. Convergence Rates for Learning Linear Operators from Noisy Data;SIAM/ASA Journal on Uncertainty Quantification;2023-05-11

3. Geometric Inverse Problems;CAM ST AD M;2023-01-05

4. On polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms;Journal of the European Mathematical Society;2022-12-22

5. Stability estimate for the broken non-abelian x-ray transform in Minkowski space;Inverse Problems;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3