Abstract
AbstractIn Garcia-Fernandez and Streets (Generalized Ricci flow, volume 76 of university lecture series, American Mathematical Society, Providence, 2021) and Oliynyk et al. (Nucl Phys B 739(3):441–458, 2006), it was shown that the generalized Ricci flow is the gradient flow of a functional $$\lambda $$
λ
generalizing Perelman’s $$\lambda $$
λ
functional for Ricci flow. In this work, we further computed the second variation formula and proved that a Bismut-flat, Einstein manifold is linearly stable under some curvature assumptions. In the last part of this paper, I proved that dynamical stability and linear stability are equivalent on a steady gradient generalized Ricci soliton (g, H, f). This generalizes the results in Haslhofer and Müller (Math Ann 360(1–2):547–553, 2014), Kröncke (Stability of Einstein Manifolds, 2014, Commun Anal Geom 28(2):351–394, 2020), Raffero and Vezzoni (On the dynamical behaviour of the generalized Ricci flow, 2020) and Sesum (Duke Math J 133(1):1–26, 2006).
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Agricola, I., Friedrich, T.: A note on flat metric connections with antisymmetric torsion. Differ. Geom. Appl. 28(4), 480–487 (2010)
2. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer, Berlin (1987)
3. Cao, H.-D., He, C.: Linear stability of Perelman’s $$\nu $$-entropy on symmetric spaces of compact type. J. Reine Angew. Math. 709, 229–246 (2015)
4. Cao, H.-D., Zhu, M.: On second variation of Perelman’s Ricci shrinker entropy. Math. Ann. 353(3), 747–763 (2012)
5. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I, volume 135 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. Geometric aspects (2007)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献