Abstract
AbstractA contact twisted cubic structure$$({\mathcal M},\mathcal {C},{\varvec{\upgamma }})$$
(
M
,
C
,
γ
)
is a 5-dimensional manifold $${\mathcal M}$$
M
together with a contact distribution $$\mathcal {C}$$
C
and a bundle of twisted cubics $${\varvec{\upgamma }}\subset \mathbb {P}(\mathcal {C})$$
γ
⊂
P
(
C
)
compatible with the conformal symplectic form on $$\mathcal {C}$$
C
. The simplest contact twisted cubic structure is referred to as the contact Engel structure; its symmetry group is the exceptional group $$\mathrm {G}_2$$
G
2
. In the present paper we equip the contact Engel structure with a smooth section $$\sigma : {\mathcal M}\rightarrow {\varvec{\upgamma }}$$
σ
:
M
→
γ
, which “marks” a point in each fibre $${\varvec{\upgamma }}_x$$
γ
x
. We study the local geometry of the resulting structures $$({\mathcal M},\mathcal {C},{\varvec{\upgamma }}, \sigma )$$
(
M
,
C
,
γ
,
σ
)
, which we call marked contact Engel structures. Equivalently, our study can be viewed as a study of foliations of $${\mathcal M}$$
M
by curves whose tangent directions are everywhere contained in $${\varvec{\upgamma }}$$
γ
. We provide a complete set of local invariants of marked contact Engel structures, we classify all homogeneous models with symmetry groups of dimension $$\ge 6$$
≥
6
up to local equivalence, and we prove an analogue of the classical Kerr theorem from Relativity.
Funder
Simons Foundation
Polish Govern-ment MNiSW
Ministero dell’Istruzione, dell’Universitàe della Ricerca
Politecnico di Torino
Horizon 2020 Framework Programme
Polish National Science Center
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Bryant, R.L.: Two exotic holonomies in dimension four, path geometries, and twistor theory, in Complex geometry and Lie theory. Proc. Symp. Pure Math. 53, 33–88 (1991)
2. Bryant, R.L.: Élie Cartan and geometric duality, pp. 5–20. Journées É. Cartan 1998 et 1999 (2000)
3. Buczyński, J.: Properties of Legendrian subvarieties of projective space. Geom. Dedic. 118, 87–103 (2006)
4. Cartan, É.: Sur la structure des groupes simples finis et continus, pp. 784–786. C. R. Acad. Sci., Paris (1893)
5. Cartan, É.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27, 109–192 (1910)