Abstract
AbstractThe paper is an attempt to resolve the prescribed Chern scalar curvature problem. We look for solutions within the conformal class of a fixed Hermitian metric. We divide the problem in three cases, according to the sign of the Gauduchon degree, that we analyse separately. In the case where the Gauduchon degree is negative, we prove that every non-identically zero and non-positive function is the Chern scalar curvature of a unique metric conformal to the fixed one. Moreover, if there exists a balanced metric with zero Chern scalar curvature, we prove that every smooth function changing sign with negative mean value is the Chern scalar curvature of a metric conformal to the balanced one.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Angella, D., Calamai, S., Spotti, C.: On Chern-Yamabe problem. Math Res Lett 24(3), 645–677 (2017). arXiv:1501.02638
2. Boothby, W.M.: Hermitian manifolds with zero curvature. Michigan Math. J. 5(2), 229–233 (1958)
3. Calamai, S., Zou, F.: A note on Chern-Yamabe problem. Differ. Geom. Appl. J Profile 69, Article ID 101612, 14 p. (2020)
4. Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977)
5. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267(4), 495–518 (1984)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献