Abstract
AbstractWe are interested in the existence of normalized solutions to the problem $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^m u+\frac{\mu }{|y|^{2m}}u + \lambda u = g(u), \quad x = (y,z) \in \mathbb {R}^K \times \mathbb {R}^{N-K}, \\ \int _{\mathbb {R}^N} |u|^2 \, dx = \rho > 0, \end{array}\right. } \end{aligned}$$
(
-
Δ
)
m
u
+
μ
|
y
|
2
m
u
+
λ
u
=
g
(
u
)
,
x
=
(
y
,
z
)
∈
R
K
×
R
N
-
K
,
∫
R
N
|
u
|
2
d
x
=
ρ
>
0
,
in the so-called at least mass critical regime. We utilize recently introduced variational techniques involving the minimization on the $$L^2$$
L
2
-ball. Moreover, we find also a solution to the related curl–curl problem $$\begin{aligned} {\left\{ \begin{array}{ll} \nabla \times \nabla \times \textbf{U}+\lambda \textbf{U}=f(\textbf{U}), \quad x \in \mathbb {R}^N,\\ \int _{\mathbb {R}^N}|\textbf{U}|^2\,dx=\rho ,\\ \end{array}\right. } \end{aligned}$$
∇
×
∇
×
U
+
λ
U
=
f
(
U
)
,
x
∈
R
N
,
∫
R
N
|
U
|
2
d
x
=
ρ
,
which arises from the system of Maxwell equations and is of great importance in nonlinear optics.
Funder
Narodowe Centrum Nauki
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC