1. Ahlfors, L.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. (2) 74, 171–191 (1961)
2. Ahlfors, L.: Curvature properties of Teichmüller’s space. J. Anal. Math. 9, 161–176 (1961/1962)
3. Candelas, P., Green, P.S., Hübsch, T.: Connected Calabi–Yau compactifications (other worlds are just around the corner). In: Gates, S. J. Jr., Preitschopf C. R. and Siegel W. (eds.) Strings’88 (College Park. MD, 1988), pp. 155–190. World Scientific Publishing, Teaneck (1989)
4. Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Elliptic and Parabolic Methods in Geometry Chow, B., Gulliver, R., Levy, S., and Sullivan, J. (eds.) (Minneapolis, MN, 1994), pp. 1–16. A K Peters, Wellesley (1996)
5. Cao, H.-D.: Recent progress on Ricci solitons. In: Recent Advances in Geometric Analysis, Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–38. International Press, Somerville (2010)