Borderline Gradient Continuity for the Normalized p-Parabolic Operator

Author:

Akman MuratORCID,Banerjee Agnid,Munive Isidro H.

Abstract

AbstractIn this paper, we prove gradient continuity estimates for viscosity solutions to $$\Delta _{p}^N u - u_t= f$$ Δ p N u - u t = f in terms of the scaling critical $$L(n+2,1 )$$ L ( n + 2 , 1 ) norm of f, where $$\Delta _{p}^N$$ Δ p N is the game theoretic normalized $$p-$$ p - Laplacian operator defined in (1.2) below. Our main result, Theorem 2.5 constitutes borderline gradient continuity estimate for u in terms of the modified parabolic Riesz potential $$\textbf{P}^{f}_{n+1}$$ P n + 1 f as defined in (2.9) below. Moreover, for $$f \in L^{m}$$ f L m with $$m>n+2$$ m > n + 2 , we also obtain Hölder continuity of the spatial gradient of the solution u, see Theorem 2.6 below. This improves the gradient Hölder continuity result in Attouchi and Parviainen (Commun Contemp Math 20(4):1750035, 2018) which considers bounded f. Our main results Theorem 2.5 and Theorem 2.6 are parabolic analogues of those in Banerjee and Munive (Commun Contemp Math 22(8):1950069, 2020). Moreover differently from that in Attouchi and Parviainen (Commun Contemp Math 20(4):1750035, 2018), our approach is independent of the Ishii–Lions method which is crucially used in Attouchi and Parviainen (Commun Contemp Math 20(4):1750035, 2018) to obtain Lipschitz estimates for homogeneous perturbed equations as an intermediate step.

Funder

Department of Atomic Energy, Government of India

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3