Abstract
AbstractIn the setting of metric measure spaces satisfying the doubling condition and the (1, p)-Poincaré inequality, we prove a metric analogue of the Bourgain–Brezis–Mironescu formula for functions in the Sobolev space $$W^{1,p}(X,d,\nu )$$
W
1
,
p
(
X
,
d
,
ν
)
, under the assumption that for $$\nu $$
ν
-a.e. point the tangent space in the Gromov–Hausdorff sense is Euclidean with fixed dimension N.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)
2. Ambrosio, L., Colombo, M., di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. In: Ambrosio, L., Giga, Y., Rybka, P., Tonegawa, Y. (eds.) Advanced Studies in Pure Mathematics: Variational Methods for Evolving Objects, pp. 1–58. Mathematical Society of Japan, Tokyo (2015)
3. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165. AMS, Providence (2010)
4. Barbieri, D.: Approximations of Sobolev norms in Carnot groups. Commun. Contemp. Math. 13(5), 765–794 (2011)
5. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., et al. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献