Abstract
AbstractUsing equivariant differential geometry, we provide a family of free boundary minimal surfaces in the unit ball $${\mathbb {B}}^n\subset {\mathbb {R}}^n$$
B
n
⊂
R
n
.
Funder
Westfälische Wilhelms-Universität Münster
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Abresch, U.: Isoparametric hypersurfaces with four or six principal curvatures. Math. Ann. 264, 283–302 (1983)
2. Alencar, H.: Minimal Hypersurfaces of $${\mathbb{R}}^{2m}$$ Invariant by $${SO}(m) \times {SO}(m)$$. Trans. Am. Math. Soc. 337, 129–141 (1993)
3. Alencar, H., Barros, A., Palmas, O.: $${O}(m) \times {O}(n)$$-Invariant Minimal Hypersurfaces in $${\mathbb{R}}^{m+n}$$. Ann. Glob. Anal. Geom. 27, 179–199 (2005)
4. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)
5. Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds. Oxford University Press, Oxford (2008)