Abstract
AbstractWe prove that if an ALE Ricci-flat manifold (M, g) is linearly stable and integrable, it is dynamically stable under Ricci flow, i.e. any Ricci flow starting close to g exists for all time and converges modulo diffeomorphism to an ALE Ricci-flat metric close to g. By adapting Tian’s approach in the closed case, we show that integrability holds for ALE Calabi–Yau manifolds which implies that they are dynamically stable.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Anselmi, D., Billó, M., Fré, P., Zaffaroni, A., Girardello, L.: ALE manifolds and conformal field theories. Int. J. Mod. Phys. A 9(17), 3007–3057 (1994)
2. Appleton, A.: Scalar curvature rigidity and Ricci DeTurck flow on perturbations of Euclidean space. Calc. Var. Partial Differ. Equ. 57(5), 23 (2018). Art. 132
3. Arthur, L.: Besse. Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1987 edition
4. ESI Lectures in Mathematics and Physics;W Ballmann,2006
5. Bamler, R.H.: Stability of Einstein Metrics of Negative Curvature. ProQuest LLC, Ann Arbor, MI (2011). Thesis (Ph.D.). Princeton University, Princeton
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献