Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Baggett, L.W., Medina, H.A., Merrill, K.D.: Generalized multi-resolution analyses and a construction procedure for all wavelet sets in $\bold R\sp n$ . J. Fourier Anal. Appl. 5(6), 563–573 (1999)
2. Blanchard, J.D.: Minimally supported frequency composite dilation wavelets. J. Fourier Anal. Appl. (2008, to appear). Online [Available] www.math.utah.edu/~jeff/Research/MSFCDW.pdf
3. Bownik, M., Speegle, D.: Meyer type wavelet bases in ${\Bbb{R}}\sp2$ . J. Approx. Theory 116(1), 49–75 (2002)
4. Candès, E., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999)
5. Candès, E., Donoho, D.L.: Curvelets and curvilinear integrals. J. Approx. Theory 113(1), 59–90 (2001)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Some crystallographic Haar type composite dilation wavelets for P4 = C4 ⋉ ℤ2;International Journal of Wavelets, Multiresolution and Information Processing;2018-05
2. A shearlet-based fast thresholded Landweber algorithm for deconvolution;International Journal of Wavelets, Multiresolution and Information Processing;2016-08-24
3. Directional Multiscale Processing of Images Using Wavelets with Composite Dilations;Journal of Mathematical Imaging and Vision;2012-10-12
4. Critically Sampled Wavelets With Composite Dilations;IEEE Transactions on Image Processing;2012-02
5. Refinable functions for dilation families;Advances in Computational Mathematics;2011-10-29