Technologies for design-build-test-learn automation and computational modelling across the synthetic biology workflow: a review

Author:

Matzko RichardORCID,Konur Savas

Abstract

AbstractMotivated by the need to parameterize and functionalize dynamic, multiscale simulations, as well as bridge the gap between advancing in silico and laboratory Synthetic Biology practices, this work evaluated and contextualized Synthetic Biology data standards and conversion, modelling and simulation methods, genetic design and optimization, software platforms, machine learning, assembly planning, automated modelling, combinatorial methods, biological circuit design and laboratory automation. This review also discusses technologies related to domain specific languages, libraries and APIs, databases, whole cell models, use of ontologies, datamining, metabolic engineering, parameter estimation/acquisition, robotics, microfluidics and touches on a range of applications. The discussed principles should provide a strong, encompassing foundation for primarily dry laboratory Synthetic Biology automation, reproducibility, interoperability, simulatability, data acquisition, parameterization, functionalization of models, classification, computational efficiency, time efficiency and effective genetic engineering. Applications impact the design-build-test-learn loop, in silico computer assisted design and simulations, hypothesis generation, yield optimization, drug design, synthetic organs, sensors and living therapeutics.

Publisher

Springer Science and Business Media LLC

Reference154 articles.

1. Akdel M et al (2022) A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 29(11):1056–1067

2. American_Chemical_Society. CAS SciFindern. 2023 [cited 2023 24/01/2023]; Available from: https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder

3. Appleton E et al (2017) Design automation in synthetic biology. Cold Spring Harb Perspect Biol 9(4):a023978

4. libRoadRunner. libRoadRunner. 2022 [cited 2022 16/12/2022]; Available from: https://www.libroadrunner.org/

5. Baig H et al (2020) Synthetic biology open language (SBOL) version 300. J Integr Bioinf. https://doi.org/10.1515/jib-2020-0017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3