Development of artificial neural network models to predict the PAMPA effective permeability of new, orally administered drugs active against the coronavirus SARS-CoV-2

Author:

Gousiadou ChrysoulaORCID,Doganis Philip,Sarimveis Haralambos

Abstract

AbstractResponding to the pandemic caused by SARS-CoV-2, the scientific community intensified efforts to provide drugs effective against the virus. To strengthen these efforts, the “COVID Moonshot” project has been accepting public suggestions for computationally triaged, synthesized, and tested molecules. The project aimed to identify molecules of low molecular weight with activity against the virus, for oral treatment. The ability of a drug to cross the intestinal cell membranes and enter circulation decisively influences its bioavailability, and hence the need to optimize permeability in the early stages of drug discovery. In our present work, as a contribution to the ongoing scientific efforts, we employed artificial neural network algorithms to develop QSAR tools for modelling the PAMPA effective permeability (passive diffusion) of orally administered drugs. We identified a set of 61 features most relevant in explaining drug cell permeability and used them to develop a stacked regression ensemble model, subsequently used to predict the permeability of molecules included in datasets made available through the COVID Moonshot project. Our model was shown to be robust and may provide a promising framework for predicting the potential permeability of molecules not yet synthesized, thus guiding the process of drug design.

Funder

Horizon 2020 Framework Programme

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

Subject

Urology,Computer Science (miscellaneous),Computer Networks and Communications,Computer Science Applications,Computational Mathematics,Biochemistry, Genetics and Molecular Biology (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3