xECG-Beats: an explainable deep transfer learning approach for ECG-based heartbeat classification

Author:

Peimankar AbdolrahmanORCID,Ebrahimi Ali,Wiil Uffe Kock

Abstract

AbstractEarly detection of abnormal heartbeats is of great importance for cardiologists for early diagnosis of cardiac diseases. This will help patients to receive in time diagnosis and prevention. Conventionally, physicians provide cardiac diagnoses by visual examination of electrocardiograms (ECGs). However, this can be a very time consuming and demanding task and, in some cases, may lead to overlooking and wrong diagnosis of life-threatening heart diseases. Therefore, an intelligent model can help to automatically analyze these huge amount of ECGs captured by different devices in clinical practice. A deep transfer learning approach is used to utilize the capability of different trained deep neural networks and to test them on new unseen datasets without the need to fully re-train the model. Two deep neural networks, namely, Visual Geometry Group (VGG) and Residual Network (ResNet) are utilized for classification of ECGs heartbeats. The models are evaluated using two unseen ECG datasets (i.e., SVDB and INCARTDB) by only optimizing their last classification layers. The overall area under curve for receiver operating characteristic (AUCROC) of two VGG and ResNet models are 0.961 and 0.966 on the SVDB dataset, respectively, and both models achieve 0.981 on the INCARTDB. This paper proposes an accurate and explainable model to classify ECG heartbeats into five categories recommended by the ANSI/AAMI standard. The proposed method paves the way to use pre-trained deep neural networks in real-time monitoring of heart patients using ECG data and to help clinicians understand the decision made by the models on each case using an explainable approach.

Funder

University of Southern Denmark

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3