Simplicial and Minimal-Variance Distances in Multivariate Data Analysis

Author:

Gillard Jonathan,O’Riordan Emily,Zhigljavsky Anatoly

Abstract

AbstractIn this paper, we study the behaviour of the so-calledk-simplicial distances andk-minimal-variance distances between a point and a sample. The family ofk-simplicial distances includes the Euclidean distance, the Mahalanobis distance, Oja’s simplex distance and many others. We give recommendations about the choice of parameters used to calculate the distances, including the size of the sub-sample of simplices used to improve computation time, if needed. We introduce a new family of distances which we callk-minimal-variance distances. Each of these distances is constructed using polynomials in the sample covariance matrix, with the aim of providing an alternative to the inverse covariance matrix, that is applicable when data is degenerate. We explore some applications of the considered distances, including outlier detection and clustering, and compare how the behaviour of the distances is affected for different parameter choices.

Publisher

Springer Science and Business Media LLC

Subject

Statistics and Probability

Reference46 articles.

1. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. International conference on database theory. Springer, Berlin, pp 420–434

2. Agrawal R, et al. (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp 94–105

3. Bickel PJ et al (2008) Regularized estimation of large covariance matrices. Ann Stat 36(1):199–227

4. Blom G (1976) Some properties of incomplete U-statistics. Biometrika 63(3):573–580

5. Blum A, Hopcroft J, Kannan R (2016) Foundations of data science. Vorabversion eines Lehrbuchs 5:5

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial whitening for high-dimensional data;Computational Statistics;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3