Abstract
Abstract
Purpose
We aimed to validate the estimation of the brain parenchymal fraction (BPF) in patients with multiple sclerosis (MS) using synthetic magnetic resonance imaging (SyMRI) by comparison with software tools of the FMRIB Software Library (FSL). In addition to a cross-sectional method comparison, longitudinal volume changes were assessed to further elucidate the suitability of SyMRI for quantification of disease-specific changes.
Methods
MRI data from 216 patients with MS and 28 control participants were included for volume estimation by SyMRI and FSL-SIENAX. Moreover, longitudinal data from 35 patients with MS were used to compare registration-based percentage brain volume changes estimated using FSL-SIENA to difference-based calculations of volume changes using SyMRI.
Results
We observed strong correlations of estimated brain volumes between the two methods. While SyMRI overestimated grey matter and BPF compared to FSL-SIENAX, indicating a systematic bias, there was excellent agreement according to intra-class correlation coefficients for grey matter and good agreement for BPF and white matter. Bland–Altman plots suggested that the inter-method differences in BPF were smaller in patients with brain atrophy compared to those without atrophy. Longitudinal analyses revealed a tendency for higher atrophy rates for SyMRI than for SIENA, but SyMRI had a robust correlation and a good agreement with SIENA.
Conclusion
In summary, BPF based on data from SyMRI and FSL-SIENAX is not directly transferable because an overestimation and higher variability of SyMRI values were observed. However, the consistency and correlations between the two methods were satisfactory, and SyMRI was suitable to quantify disease-specific atrophy in MS.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Radiology, Nuclear Medicine and imaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献