First experience with Walrus balloon guide catheter in a whole-body flow model

Author:

Guerreiro HelenaORCID,Flottmann Fabian A,Kyselyova Anna A.,Wagner Maximilian,Brekenfeld Caspar,Eckert Bernd,Illies Till,Wodarg Fritz,Fiehler Jens,Bester Maxim

Abstract

Abstract Purpose Flow arrest using a balloon guide catheter (BGC) in mechanical thrombectomy (MT) due to large vessel occlusion has been associated with better outcomes. Known limitations of currently commercially available BGCs are incompatibility with large bore aspiration catheters (AC) and lack of distal flexibility. Walrus presents variable stiffness and compatibility with large bore AC. The goal of this study is to describe the first experience with Walrus in a realistic stroke simulation model. Methods A full-length modular vascular model under physiological conditions was used. 8F+-Walrus inner-diameter (ID) 0.087in 95 cm combined with 6F-Sofia AC ID 0.070in 131 cm and an 8F-Flowgate2 BGC ID 0.084in 95 cm with a 5F-Sofia AC ID 0.055in 125 cm were used to perform aspiration MT. User surveys, access to target and occlusion site, technique, time of delivery, anatomical change, and catheter kick-back were assessed. Results Seven neuroradiologists with average of 10 years-experience in MT performed primary aspiration using the above-mentioned combinations in three different anatomies (N = 41). All operators would likely (29%) or very likely (71%) use again Walrus in combination with large bore AC and the majority (86%) found its navigability easier than with other BGCs. Time to reach final BGC position and catheter kick-back did not differ significantly among anatomies or catheter combinations (p > 0.05). However, Walrus was more likely to reach ICA petrous segment (p < 0.05) and intracranial occlusion with AC (p < 0.01). Conclusion The Walrus combined with large bore AC presented significantly better distal access and navigability for primary aspiration in an in vitro stroke model.

Funder

Bundesministerium für Bildung und Forschung

Universitätsklinikum Hamburg-Eppendorf (UKE)

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3