Meningioma grading via diagnostic imaging: A systematic review and meta-analysis

Author:

Upreti Tushar,Dube Sheen,Pareek Vibhay,Sinha Namita,Shankar JaiORCID

Abstract

Abstract Purpose Meningioma is the most common intracranial tumor, graded on pathology using WHO criteria to predict tumor course and treatment. However, pathological grading via biopsy may not be possible in cases with poor surgical access due to tumor location. Therefore, our systematic review aims to evaluate whether diagnostic imaging features can differentiate high grade (HG) from low grade (LG) meningiomas as an alternative to pathological grading. Methods Three databases were searched for primary studies that either use routine magnetic resonance imaging (MRI) or computed tomography (CT) to assess pathologically WHO-graded meningiomas. Two investigators independently screened and extracted data from included studies. Results 24 studies met our inclusion criteria with 12 significant (p < 0.05) CT and MRI features identified for differentiating HG from LG meningiomas. Cystic changes in the tumor had the highest specificity (93.4%) and irregular tumor-brain interface had the highest positive predictive value (65.0%). Mass effect had the highest sensitivity (81.0%) and negative predictive value (90.7%) of all imaging features. Imaging feature with the highest accuracy for identifying HG disease was irregular tumor-brain interface (79.7%). Irregular tumor-brain interface and heterogenous tumor enhancement had the highest AUC values of 0.788 and 0.703, respectively. Conclusion Our systematic review highlight imaging features that can help differentiate HG from LG meningiomas.

Funder

Max Rady College of Medicine, University of Manitoba

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3