Quantitative anatomical analysis of lumbar interspaces based on 3D CT imaging: optimized segment selection for lumbar puncture in different age groups

Author:

Zhuang Yuan-Dong,Hu Xiao-Cong,Dai Ke-Xin,Ye Jun,Zhang Chen-Hui,Zhuo Wen-Xuan,Wu Jian-Feng,Liu Shi-Chao,Liang Ze-Yan,Chen Chun-MeiORCID

Abstract

Abstract Background Optimal lumbar puncture segment selection remains controversial. This study aims to analyze anatomical differences among L3-4, L4-5, and L5-S1 segments across age groups and provide quantitative evidence for optimized selection. Methods 80 cases of CT images were collected with patients aged 10–80 years old. Threedimensional models containing L3-S1 vertebrae, dural sac, and nerve roots were reconstructed. Computer simulation determined the optimal puncture angles for the L3-4, L4-5, and L5-S1 segments. The effective dural sac area (ALDS), traversing nerve root area (ATNR), and area of the lumbar inter-laminar space (ALILS) were measured. Puncture efficacy ratio (ALDS/ALILS) and nerve injury risk ratio (ATNR/ALILS) were calculated. Cases were divided into four groups: A (10–20 years), B (21–40 years), C (41–60 years), and D (61–80 years). Statistical analysis was performed using SPSS. Results 1) ALDS was similar among segments; 2) ATNR was greatest at L5-S1; 3) ALILS was greatest at L5-S1; 4) Puncture efficacy ratio was highest at L3-4 and lowest at L5-S1; 5) Nerve injury risk was highest at L5-S1. In group D, L5-S1 ALDS was larger than L3-4 and L4-5. ALDS decreased after age 40. Age variations were minimal across parameters. Conclusion The comprehensive analysis demonstrated L3-4 as the optimal first-choice segment for ages 10–60 years, conferring maximal efficacy and safety. L5-S1 can serve as an alternative option for ages 61–80 years when upper interspaces narrow. This study provides quantitative imaging evidence supporting age-specific, optimized lumbar puncture segment selection.

Funder

Fujian Provincial Joint Funds for the Innovation of Science and Technology

Fujian Provincial Science and Technology Department Social development guidance (key) project

United Fujian Provincial Health and Education Project for Tackling the Key Research. P.R. China

Ministry of Education Industry-school Cooperative Education Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3