Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: a multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer

Author:

Usuzaki TakumaORCID,Takahashi Kengo,Inamori Ryusei,Morishita Yohei,Shizukuishi Takashi,Takagi Hidenobu,Ishikuro Mami,Obara Taku,Takase Kei

Abstract

Abstract Purpose This study aimed to perform multimodal analysis by vision transformer (vViT) in predicting O6-methylguanine-DNA methyl transferase (MGMT) promoter status among adult patients with diffuse glioma using demographics (sex and age), radiomic features, and MRI. Methods The training and test datasets contained 122 patients with 1,570 images and 30 patients with 484 images, respectively. The radiomic features were extracted from enhancing tumors (ET), necrotic tumor cores (NCR), and the peritumoral edematous/infiltrated tissues (ED) using contrast-enhanced T1-weighted images (CE-T1WI) and T2-weighted images (T2WI). The vViT had 9 sectors; 1 demographic sector, 6 radiomic sectors (CE-T1WI ET, CE-T1WI NCR, CE-T1WI ED, T2WI ET, T2WI NCR, and T2WI ED), 2 image sectors (CE-T1WI, and T2WI). Accuracy and area under the curve of receiver-operating characteristics (AUC-ROC) were calculated for the test dataset. The performance of vViT was compared with AlexNet, GoogleNet, VGG16, and ResNet by McNemar and Delong test. Permutation importance (PI) analysis with the Mann–Whitney U test was performed. Results The accuracy was 0.833 (95% confidence interval [95%CI]: 0.714–0.877) and the area under the curve of receiver-operating characteristics was 0.840 (0.650–0.995) in the patient-based analysis. The vViT had higher accuracy than VGG16 and ResNet, and had higher AUC-ROC than GoogleNet (p<0.05). The ED radiomic features extracted from the T2-weighted image demonstrated the highest importance (PI=0.239, 95%CI: 0.237–0.240) among all other sectors (p<0.0001). Conclusion The vViT is a competent deep learning model in predicting MGMT status. The ED radiomic features of the T2-weighted image demonstrated the most dominant contribution.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3