1. Bains, T.: Generalized Hamming weights and their applications to secret sharing schemes, M.S. thesis, Dept. Korteweg de Vries Inst. Math., Univ. Amsterdam, Amsterdam (2008)
2. Ball, T., Camps, E., Chimal-Dzul, H., Jaramillo-Velez, D., López, H.H., Nichols, N., Perkins, M., Soprunov, I., Vera-Martínez, G., Whieldon, G.: Coding theory package for Macaulay2. J. Softw. Algebra Geom. (to appear). https://arxiv.org/pdf/2007.06795.pdf
3. Becker, T., Weispfenning, V.: Gröbner Bases A Computational Approach to Commutative Algebra, in Cooperation with Heinz Kredel, Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)
4. Bruen, A.: Blocking sets and low-weight codewords in the generalized Reed-Muller codes. Contemp. Math. 525, 161–164 (2010)
5. Carvalho, C., Neumann, V.: On the second Hamming weight of some Reed-Muller type codes. Finite Fields Appl. 24, 88–94 (2013)