Abstract
AbstractThe aim of this paper is to study the algebraic structure of the space $$R(\Gamma _{n,m})$$
R
(
Γ
n
,
m
)
of representations of the torus knot groups, $$\Gamma _{n,m}=\left\langle x,y:x^{n}=y^{m}\right\rangle$$
Γ
n
,
m
=
x
,
y
:
x
n
=
y
m
, into the linear special group $$SL(2,{\mathbb {C}})$$
S
L
(
2
,
C
)
.
Funder
National University of Colombia
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,General Mathematics
Reference42 articles.
1. Alexander, J.W.: Note on Riemann spaces. Bull. Amer. Math. Soc 26, 370–372 (1920)
2. Beardon, A.: The Geometry of Discrete Groups. Springer-Verlag, New York (1983)
3. Burde, G., Zieschang, H.: Knots. Walter de Guyter, New York, NY (1985)
4. Crowell, R., Fox, R.: Introduction to Knot Theory. Blaisdell Publishing Company, New York (1963)
5. Culler, M., Shalen, P.: Varieties of group representations and splitting of 3-manifolds. Ann. of Math. 117, 109–146 (1983)