On the structure of the infinitesimal generators of scalar one-dimensional semigroups with discrete Lyapunov functionals

Author:

Fusco Giorgio,Rocha CarlosORCID

Abstract

AbstractDynamical systems generated by scalar reaction-diffusion equations on an interval enjoy special properties that lead to a very simple structure for the semiflow. Among these properties, the monotone behavior of the number of zeros of the solutions plays an essential role. This discrete Lyapunov functional contains important information on the spectral behavior of the linearization and leads to a Morse-Smale description of the dynamical system. Other systems, like the linear scalar delay differential equations under monotone feedback conditions, possess similar kinds of discrete Lyapunov functions. Here we discuss and characterize classes of linear equations that generate semiflows acting on $$C^0[0,1]$$ C 0 [ 0 , 1 ] or on $$C^1[0,1]$$ C 1 [ 0 , 1 ] which admit discrete Lyapunov functions related to the zero number. We show that, if the space is $$C^1[0,1]$$ C 1 [ 0 , 1 ] , the corresponding equations are essentially parabolic partial differential equations. In contrast, if the space is $$C^0[0,1]$$ C 0 [ 0 , 1 ] , the corresponding equations are generalizations of monotone feedback delay differential equations.

Funder

FCT/Portugal

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Angenent, S.: The Morse-Smale property for a semi-linear parabolic equation. J. Differ. Equ. 62, 427–442 (1986)

2. Angenent, S.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)

3. Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. Dyn. Rep. 1, 57–89 (1988)

4. Brunovský, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations II: the complete solution. J. Differ. Equ. 81, 106–135 (1989)

5. Coddington, E.A., Levinson, N.: Theor. Ordin. Differ. Equ. McGraw-Hill, New York (1974)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3