Abstract
AbstractWe prove K-stability of smooth Fano 3-folds of Picard rank 3 and degree 22 that satisfy very explicit generality condition.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Abban, H., Zhuang, Z.: K-stability of Fano varieties via admissible flags. In Forum of Mathematics, Pi, vol. 10, pp. e15, 43 (2022)
2. Akaike, H.: Local delta invariants of weak del Pezzo surfaces with the anti-canonical degree $$\geqslant 5$$. (2023). arXiv:2304.09437
3. Araujo, C., Castravet, A.-M., Cheltsov, I., Fujita, K., Kaloghiros, A.-S., Martinez-Garcia, J., Shramov, C., Süß, H., Viswanathan, N.: The Calabi problem for Fano threefolds. LMS Lecture Notes in Mathematics, vol. 485. Cambridge University Press (2023)
4. Blum, H., Liu, Y., Xu, C.: Openness of K-semistability for Fano varieties. Duke Math. J. 171, 2753–2797 (2022)
5. Cheltsov, I., Fujita, K., Kishimoto, T., Okada, T.: K-stable divisors in $$\mathbb{P} ^1\times \mathbb{P} ^1\times \mathbb{P} ^2$$ of degree $$(1,1,2)$$. Nagoya Math. J. 251, 686–714 (2023)