Population-Level Surveillance of Domestic Assaults in the Home Using the National Emergency Medical Services Information System (NEMSIS)

Author:

AbiNader Millan AlexanderORCID,Rundle Andrew G.,Park Yoosun,Lo Alexander X.

Abstract

AbstractViolence in the home, including partner violence, child abuse, and elder abuse, is pervasive in the United States. An informatics approach allowing automated analysis of administrative data to identify domestic assaults and release timely and localized data would assist preventionists to identify geographic and demographic populations of need and design tailored interventions. This study examines the use of an established national dataset, the NEMSIS 2019, as a potential annual automated data source for domestic assault surveillance. An algorithm was used to identify individuals who utilized emergency medical services (EMS) for a physical assault in a private residence (N = 176,931). Descriptive analyses were conducted to define the identified population and disposition of patients. A logistic regression was performed to predict which characteristics were associated with consistent domestic assault identification by the on-scene EMS clinician and dispatcher. The sample was majority female (52.2%), White (44.7%), urban (85.5%), and 21–29 years old (24.4%). A disproportionate number of those found dead on scene were men (74.5%), and female patients more often refused treatment (57.8%) or were treated and then released against medical advice (58.4%). Domestic assaults against children and seniors had higher odds of being consistently identified by both the dispatcher and EMS clinician than those 21–49, and women had lower odds of consistent identification than men. While a more specific field to identify the type of domestic assault (e.g., intimate partner) would help inform specialized intervention planning, these data indicate an opportunity to systematically track domestic assaults in communities and describe population-specific needs.

Funder

Davee Foundation

Centers for Disease Control and Prevention Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3