Using Power Analysis to Choose the Unit of Randomization, Outcome, and Approach for Subgroup Analysis for a Multilevel Randomized Controlled Clinical Trial to Reduce Disparities in Cardiovascular Health

Author:

Harrall Kylie K.ORCID,Sauder Katherine A.,Glueck Deborah H.,Shenkman Elizabeth A.,Muller Keith E.

Abstract

AbstractWe give examples of three features in the design of randomized controlled clinical trials which can increase power and thus decrease sample size and costs. We consider an example multilevel trial with several levels of clustering. For a fixed number of independent sampling units, we show that power can vary widely with the choice of the level of randomization. We demonstrate that power and interpretability can improve by testing a multivariate outcome rather than an unweighted composite outcome. Finally, we show that using a pooled analytic approach, which analyzes data for all subgroups in a single model, improves power for testing the intervention effect compared to a stratified analysis, which analyzes data for each subgroup in a separate model. The power results are computed for a proposed prevention research study. The trial plans to randomize adults to either telehealth (intervention) or in-person treatment (control) to reduce cardiovascular risk factors. The trial outcomes will be measures of the Essential Eight, a set of scores for cardiovascular health developed by the American Heart Association which can be combined into a single composite score. The proposed trial is a multilevel study, with outcomes measured on participants, participants treated by the same provider, providers nested within clinics, and clinics nested within hospitals. Investigators suspect that the intervention effect will be greater in rural participants, who live farther from clinics than urban participants. The results use published, exact analytic methods for power calculations with continuous outcomes. We provide example code for power analyses using validated software.

Funder

National Institute of General Medical Sciences

Agency for Healthcare Research and Quality

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3