Monotone continuous dependence of solutions of singular quenching parabolic problems

Author:

Díaz Jesus IldefonsoORCID,Giacomoni Jacques

Abstract

AbstractWe prove the continuous dependence, with respect to the initial datum of solutions of the “quenching parabolic problem”$$\partial _{t}u-\Delta u+\chi _{\{u>0\}}u^{-\beta }=\lambda u^{p}$$tu-Δu+χ{u>0}u-β=λup, with zero Dirichlet boundary conditions, when$$\beta \in (0,1),p\in (0,1],\lambda \ge 0$$β(0,1),p(0,1],λ0and$$\chi _{\{u>0\}}$$χ{u>0}denotes the characteristic function of the set of points (xt) where$$u(x,t)>0$$u(x,t)>0. Notice that the absorption term$$\chi _{\{u>0\}}u^{-\beta }$$χ{u>0}u-βis singular and monotone decreasing which does not allow the application of standard monotonicity arguments.

Funder

Universidad Complutense de Madrid

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference41 articles.

1. Ambroso, A., Méhats, F., Raviart, P.A.: On singular perturbation problems for the nonlinear Poisson equation. Asympt. Anal. 25(1), 39–91 (2001)

2. Bandle, C., Brauner, C.M.: Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986) ingular perturbation method in a parabolic problem with free boundary, Boole Press Conf. Ser., 8, Boole, Dún Laoghaire, 7–14, 1986

3. Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow up for $$u_{t}-\Delta u=g(u)$$ revisited. Adv. Differ. Eq. 1(1), 73–90 (1996)

4. Brézis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277–304 (1996)

5. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications, vol 13. The Clarendon Press, Oxford University Press, New York, 1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singular anisotropic equations with a sign-changing perturbation;Nonlinear Analysis: Modelling and Control;2023-10-27

2. Positive solutions for a class of singular (pq)-equations;Advances in Nonlinear Analysis;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3