Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Agarwal, R.P., Huang, N.J., Cho, Y.J.: Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings. J. Inequal. Appl. 7, 807–828 (2002)
2. Alakoya, T.O., Mewomo, O.T.: Viscosity $$S$$-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems. Comp. Appl. Math. 41, 39 (2022). https://doi.org/10.1007/s40314-021-01749-3
3. Alakoya, T.O., Uzor, V.A., Mewomo, O.T.: A new projection and contraction method for solving split monotone variational inclusion, pseudomonotone variational inequality, and common fixed point problems. Comp. Appl. Math. 42, 3 (2023). https://doi.org/10.1007/s40314-022-02138-0
4. Alakoya, T.O., Uzor, V.A., Mewomo, O.T., Yao, J.-C.: On a system of monotone variational inclusion problems with fixed-point constraint. J. Inequ. Appl. 2022, 47 (2022). https://doi.org/10.1186/s13660-022-02782-4
5. Alber, Ya.I., Chidume, C.E., Zegeya, H.: Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2006, 10673 (2006). https://doi.org/10.1155/FPTA/2006/10673