Categorical Torelli theorems: results and open problems

Author:

Pertusi Laura,Stellari PaoloORCID

Abstract

AbstractWe survey some recent results concerning the so called Categorical Torelli problem. This is to say how one can reconstruct a smooth projective variety up to isomorphism, by using the homological properties of special admissible subcategories of the bounded derived category of coherent sheaves of such a variety. The focus is on Enriques surfaces, prime Fano threefolds and cubic fourfolds.

Funder

European Research Council

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference146 articles.

1. Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for K-trivial surfaces, with an appendix by Max Lieblich. J. Eur. Math. Soc. 15(1), 1–38 (2013)

2. Addington, N., Thomas, R.: Hodge theory and derived categories of cubic fourfolds. Duke Math. J. 163, 1885–1927 (2014)

3. Alper, J., Halpern-Leistner, D., Heinloth, J.: Existence of moduli spaces for algebraic stacks. arXiv:1812.01128

4. Antieau, B., Krashen, D., Ward, M.: Derived categories of torsors for abelian schemes. Adv. Math. 306, 1–23 (2017)

5. Altavilla, M., Petkovic, M., Rota, F.: Moduli spaces on the Kuznetsov component of Fano threefolds of index 2, to appear in: Épijournal Géom. Algébrique. arXiv:1908.10986

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A categorical Torelli theorem for hypersurfaces;Bulletin of the London Mathematical Society;2024-07-17

2. Serre algebra, matrix factorization and categorical Torelli theorem for hypersurfaces;Mathematische Annalen;2024-06-17

3. Categorical Torelli theorems for Gushel–Mukai threefolds;Journal of the London Mathematical Society;2024-02-22

4. Derived categories of hearts on Kuznetsov components;Journal of the London Mathematical Society;2023-08-19

5. Kuznetsov’s Fano threefold conjecture via K3 categories and enhanced group actions;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3