Abstract
AbstractWe survey some recent results concerning the so called Categorical Torelli problem. This is to say how one can reconstruct a smooth projective variety up to isomorphism, by using the homological properties of special admissible subcategories of the bounded derived category of coherent sheaves of such a variety. The focus is on Enriques surfaces, prime Fano threefolds and cubic fourfolds.
Funder
European Research Council
Università degli Studi di Milano
Publisher
Springer Science and Business Media LLC
Reference146 articles.
1. Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for K-trivial surfaces, with an appendix by Max Lieblich. J. Eur. Math. Soc. 15(1), 1–38 (2013)
2. Addington, N., Thomas, R.: Hodge theory and derived categories of cubic fourfolds. Duke Math. J. 163, 1885–1927 (2014)
3. Alper, J., Halpern-Leistner, D., Heinloth, J.: Existence of moduli spaces for algebraic stacks. arXiv:1812.01128
4. Antieau, B., Krashen, D., Ward, M.: Derived categories of torsors for abelian schemes. Adv. Math. 306, 1–23 (2017)
5. Altavilla, M., Petkovic, M., Rota, F.: Moduli spaces on the Kuznetsov component of Fano threefolds of index 2, to appear in: Épijournal Géom. Algébrique. arXiv:1908.10986
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献