Abstract
AbstractThe present discussion is to study the following second order nonlinear delay dynamic equation of the form: $$\begin{aligned}{}[r(\theta )(\mathcal {W}^{\Delta }(\theta ))^{\alpha }]^{\Delta } +\mathcal {P}(\theta )\mathcal {W}^{\beta }(\eta (\theta ))=0,\;\theta \in \mathbb {T}_{0}=[\theta _{0},\infty )\cap \mathbb {T} \end{aligned}$$
[
r
(
θ
)
(
W
Δ
(
θ
)
)
α
]
Δ
+
P
(
θ
)
W
β
(
η
(
θ
)
)
=
0
,
θ
∈
T
0
=
[
θ
0
,
∞
)
∩
T
under the assumption $$\begin{aligned} \int _{\theta _{0}}^{\theta }r^{-1/\alpha }(s)\Delta s<\infty . \end{aligned}$$
∫
θ
0
θ
r
-
1
/
α
(
s
)
Δ
s
<
∞
.
We divide the research into two halves, $$\alpha >\beta $$
α
>
β
and $$\alpha <\beta $$
α
<
β
, and look for some $$\limsup $$
lim sup
type conditions that cause all solutions to oscillate. In addition, we extend the Philos-type oscillation criteria. To illustrate the analytical findings, two examples are provided.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Second Order Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht (2002)
2. Agarwal, R.P., O’ Regan, D., Saker, S.H.: Philos-type oscillation criteria for second order half-linear dynamic equations on time scales. Rocky Mt. J. Math 37, 1085–1104 (2007)
3. Ataeea, P., Hahn, J.O., Dumont, G.A., Noubari, H.A., Boyce, W.T.: A model-based approach to stability analysis of autonomic-cardiac regulation. Comput. Biol. Med. 61, 119–126 (2015)
4. AlNemer, G., Saied, A.I., Hassan, A.M., Cesarano, C., Rezk, H.M., Zakarya, M.: On some new dynamic inequalities involving C-monotonic functions on time scales. Axioms 11(644), 1–13 (2022)
5. Baoguo, J., Erbe, L., Peterson, A.: An oscillation theorem for second order superlinear dynamic equations on time scales. Appl. Math. Comput. 219, 10333–10342 (2013)