Correlating the Unconfined Compressive Strength of Rock with the Compressional Wave Velocity Effective Porosity and Schmidt Hammer Rebound Number Using Artificial Neural Networks
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s00603-022-02992-8.pdf
Reference138 articles.
1. Afolagboye LO, Talabi AO, Oyelami CA (2017) The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria. J Afr Earth Sci 129:659–667. https://doi.org/10.1016/j.jafrearsci.2017.02.013
2. Aggistalis G, Alivizatos A, Stamoulis D, Stournaras G (1996) Correlating uniaxial compressive strength with Schmidt hardness, point load index, young’s modulus, and mineralogy of gabbros and basalts (Northern Greece). Bull Int Assoc Eng Geol. https://doi.org/10.1007/BF02600650
3. Akbar H, Suryana N, Sahib S (2011) Training neural networks using Clonal Selection Algorithm and Particle Swarm Optimization: a comparisons for 3D object recognition. In: 2011 11th international conference on hybrid intelligent systems (HIS), pp 692–697
4. Akram MS, Farooq S, Naeem M, Ghazi S (2017) Prediction of mechanical behaviour from mineralogical composition of Sakesar limestone, Central Salt Range, Pakistan. Bull Eng Geol Environ 76:601–615. https://doi.org/10.1007/s10064-016-1002-3
5. Altindag R (2012) Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. J South Afr Inst Min Metall 112:229–237
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of selected machine learning techniques for predicting the pull-off strength of the surface layer of eco-friendly concrete;Advances in Engineering Software;2024-09
2. Predicting Rock Unconfined Compressive Strength Based on Tunnel Face Boreholes Measurement-While-Drilling Data;KSCE Journal of Civil Engineering;2024-08-14
3. A novel identification model for rock burst grades-taking Jinping II hydropower station hub engineering as an example;Computers and Geotechnics;2024-08
4. Predicting uniaxial compressive strength of building stone based on index tests: Correlations, validity, reliability, and unification;Construction and Building Materials;2024-08
5. Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III;Machining Science and Technology;2024-07-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3