Damage Evolution of Coal with Inclusions Under Triaxial Compression

Author:

Zhao YufengORCID,Konietzky Heinz,Herbst Martin

Abstract

AbstractAlong with the advance of the working face, coal experiences different loading stages. Laboratory tests and numerical simulations of fracture and damage evolution aim to better understand the structural stability of coal layers. Three-dimensional lab tests are performed and coal samples are reconstructed using X-ray computer tomography (CT) technique to get detailed information about damage and deformation state. Three-dimensional discrete element method (DEM)-based numerical models are generated. All models are calibrated against the results obtained from uniaxial compressive strength (UCS) tests and triaxial compression (TRX) tests performed in the laboratory. A new approach to simulate triaxial compression tests is established in this work with significant improved handling of the confinement to get realistic simulation results. Triaxial tests are simulated in 3D with the particle-based code PFC3D using a newly developed flexible wall (FW) approach. This new numerical simulation approach is validated by comparison with laboratory tests on coal samples. This approach involves an updating of the applied force on each wall element based on the flexible nature of a rubber sleeve. With the new FW approach, the influence of the composition (matrix and inclusions) of the samples on the peak strength is verified. Force chain development and crack distributions are also affected by the spatial distribution of inclusions inside the sample. Fractures propagate through the samples easily at low confining pressures. On the contrary, at high confining pressure, only a few main fractures are generated with orientation towards the side surfaces. The evolution of the internal fracture network is investigated. The development of microcracks is quantified by considering loading, confinement, and structural character of the rock samples. The majority of fractures are initiated at the boundary between matrix and inclusions, and propagate along their boundaries. The internal structure, especially the distribution of inclusions has significant influence on strength, deformation, and damage pattern.

Funder

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3