Weakening of Compressive Strength of Granite by Piezoelectric Actuation of Quartz Using High-Frequency and High-Voltage Alternating Current: A 3D Numerical Study

Author:

Saksala Timo,Rubio Ruiz Rafael Arturo,Kane Pascal-Alexandre,Hokka Mikko

Abstract

AbstractPiezoelectric excitation of quartz mineral phase in granite using high-frequency and high-voltage alternating current (HF-HV-AC) is a potential new weakening pretreatment in comminution of rock. The present study addresses this topic numerically by quantifying the weakening effect on the compressive strength of granite. For this end, a numerical method based on a damage-viscoplasticity model for granite failure under piezoelectric actuation is developed. The rock material is modelled as heterogeneous and isotropic. However, the piezoelectric properties of quartz are anisotropic. The governing global piezoelectro-mechanical problem is solved in a staggered manner explicitly in time. Numerical simulations predict that the weakening effect on compressive strength of granite is 10% with the excitation frequency and voltage of 274.4 kHz and 150 kV of the pretreatment. As the weakening effect takes place at a natural frequency of the numerical rock sample, the quartz content has only a slight effect on the frequency at which maximum weakening occurs. Moreover, the weakening effect depends strongly on the orientation of the quartz crystals. In a more practical application of simulating low-rate compression of a sphere-shaped rock sample, a weakening effect of 8% after the HF-HV-AC pretreatment was predicted.

Funder

Tampere University including Tampere University Hospital, Tampere University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3