Mineral Composition and Grain Size Effects on the Fracture and Acoustic Emission (AE) Characteristics of Rocks Under Compressive and Tensile Stress

Author:

Du Kun,Sun Yu,Zhou Jian,Khandelwal ManojORCID,Gong Fengqiang

Abstract

AbstractThe influence of rock mineral composition and mineral grain size on basic rock strength performance and AE characteristics have been studied, 13 different rocks microstructures are analyzed in an optical microscope thin section using petrographic image analysis, making it possible to determine the mineral composition and mineral texture characteristics of rocks. Then, the basic strength parameters of rock and AE signals generated during fracture propagation were obtained by UCT (uniaxial compression test) and BIT (Brazilian intension test). Finally, the relationship between basic strength parameters and AE characteristics of rock with mineral composition and grain size was analyzed. The results showed that different mineral constituents have significant effects on rock strength. The positive influence of plagioclase content on igneous strength was obtained. Sedimentary rocks strength increases initially and then decreases with the increase of plagioclase content. Besides, with the increase in quartz and K-feldspar content, the strength of the rock was weakened obviously. It is also found that the greater the dimensional deviation of mineral grain, the greater the strength of the rock. The strength of igneous rocks was inversely proportional to the mineral grain size, but there is no correlation between the sedimentary rocks strength and the mineral grain size. Furthermore, the tension–shear crack propagation of rock can effectively distinguish by judging that the data set of the AF–RA density graph was nearby the AF axis or RA axis and the peak frequency data sets of below 100 kHz or more than. Alterations in the rock nature are the main key reasons for the differences between AE hit rate, AE count rate, AE energy, and cumulative energy. The plagioclase content and grain size play a decisive role in AE signal characteristics and failure mode.

Funder

Federation University Australia

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3