A Pre-peak Elastoplastic Damage Model of Gosford Sandstone Based on Acoustic Emission and Ultrasonic Wave Measurement

Author:

Li Xu,Si GuangyaoORCID,Oh Joung,Canbulat Ismet,Xiang Zizhuo,Li Tianbin

Abstract

AbstractThe determination of internal material damage is always an arduous challenge. Non-destructive monitoring methods show great potential in quantitatively determining the internal material properties, whereas most of the studies relying on external observations remain in a qualitative stage. They either violate the basic thermodynamic assumptions or are difficult to guide engineering practice. In this paper, following the theory of continuum mechanics, an elastoplastic damage model based on non-destructive monitoring methods (i.e., acoustic emission and ultrasonic wave velocity measurement) has been developed. To capture the continuous and precise damage evolution inside rock mass, P wave velocity obtained by ultrasonic wave measurement was utilised and then considered as an input for the proposed elastoplastic damage model. Triaxial loading test results on six Gosford sandstone samples were analysed first to characterise critical stresses along the stress–strain loading curves, such as crack closure stress, stable crack propagation stress and unstable crack propagation stress. The drop of ultrasonic wave velocity can be seen as an indicator to represent the damage evolution inside rock material. Damage initiation is also closely related to the confining stress and dilation induced volumetric expansion. The test results also suggested that the Drucker–Prager criterion is sufficient to describe the plastic yielding surface and the following material hardening. A non-associated plastic flow assumption was adopted, considering the essence of microcrack shearing in rock failure and the effect of hydrostatic pressure on plastic deformation. A modified Drucker–Prager plastic potential was also introduced to track the orientation of plastic increment with material hardening. A scalar damage variable was derived from ultrasonic wave measurement results to indirectly represent the deterioration of rock properties (modulus). The proposed model was used to match lab test results with high consistency, and the main features of rock behaviour in triaxial loading tests were successfully captured by the model. Finally, the damage evolution of rock samples was analysed, which indicates that damage is dependent on its conjugate force, namely damage energy release rate Y. This study proves that P wave velocity can be an effective approach to measure and forecast the internal damage evolution inside rock mass, which has broad prospects for engineering applications.

Funder

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3