Mixed-Mode Fracture Modelling of the Near-Wellbore Interaction Between Hydraulic Fracture and Natural Fracture

Author:

Xi Xun,Shipton Zoe K.,Kendrick Jackie E.,Fraser‑Harris Andrew,Mouli-Castillo Julien,Edlmann Katriona,McDermott Christopher I.,Yang ShangtongORCID

Abstract

AbstractThe interaction between hydraulic fractures (HF) and natural fractures (NF) is one of the most fundamental phenomena in hydraulic fracturing. The near-wellbore interaction between HF and NF significantly affects fracking-related operations including the injected fluid flow, proppant transport and well productivity. However, the nature of fracturing modes, combined with hydro-mechanical coupling, poses great difficulties and challenges in addressing this problem. Literature review suggests that little research has been undertaken on near-wellbore interaction, especially considering the fully coupled hydro-mechanical mixed-mode fracturing process. This paper develops a new fracture model incorporating the Mohr–Coulomb criterion with the cohesive crack model. The model is implemented into ABAQUS solver by in-house FORTRAN subroutines. The rock matrix and cohesive crack interfaces are both coupled with fluid flow. The developed model is then validated by comparing the results with analytical solutions and experimental results. Moreover, the effects of approach angle, NF location, in situ stress, cohesion strength and friction angle of NF, and flow rate on the near-wellbore interaction are investigated. Three interaction modes, i.e., cross, deflect and offset, are reproduced through the numerical method. The crack deflection into NF is a shear-dominated mixed-mode fracture. A high injection pressure in the wellbore tends to drive the HF to cross a NF located close to the wellbore. The smaller the cohesion strength and friction angle of NF is, the larger the offsetting ratio is. A low injection flow rate can help activate natural fractures near the wellbore when intersected by HF.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3