An experimental investigation into the salt-weathering susceptibility of building limestones

Author:

Scrivano SimonaORCID,Gaggero Laura

Abstract

AbstractDimension and ornamental stones used for built heritage are frequently affected, under all climates, by intense weathering induced by the transport of saline solutions. Accordingly, researchers addressed the weathering mechanisms induced by salts (primarily Na2SO4), the stresses generated in the host material, and the durability of ornamental and dimension stones.This study investigates the behaviour of four sedimentary lithotypes, differing in texture and structure (Breccia Aurora, Rosso Verona, and fine- and coarse-grained Vicenza Stone) exposed to a selection of saline solutions, aiming at evaluating their susceptibility to weathering and the influence of petrographic features on durability. The chosen Na2SO4, MgSO4, Na2CO3, NaCl, and KNO3 solutions include the anions characterizing the major saline sources affecting built heritage: capillary rise, acid rain, atmospheric particulate deposition, bird or other animal scat, and de-icing salt contamination.The petrophysical properties of unweathered and salt-weathered samples were characterized by relative mass variation estimation, capillary rise, and hygroscopic absorption-based porosimetry. Scanning Electron Microscopy coupled with microprobe allowed studying the morphological changes triggered by weathering and analysing the chemical composition of the efflorescence crust.The whole of data, consistently with literature, allowed inferring pore type and distribution as the main intrinsic parameters controlling salt weathering susceptibility. Moreover, Na2SO4 and Na2CO3 proved to be the most harmful, probably due to their ability to crystallize in different hydration stages at room temperature. The comparative analysis of the induced weathering can help to choose suitable dimension stones for new buildings or restoration replacements.

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3