Thermodynamic Characterization of Chemical Damage in Variably Saturated Water-Active Shales

Author:

Siddiqui Mohammed Abdul QadeerORCID,Roshan Hamid

Abstract

AbstractA constitutive framework is developed for variably saturated water-active swelling rocks undergoing chemical damage using modified mixture theory and continuum damage mechanics. The Helmholtzian thermodynamic potential for the skeletal system is derived as a function of the state variables including deformation, damage, two-phase fluid pressures, and chemical potential. Using this, in addition to chemo-poroelastic constitutive equations, a thermodynamically consistent first-order estimation of the damage variable is developed. The working of the theory is shown through the numerical example of water uptake in clay-rich shale rocks solved by the finite element method. The numerical results portray the significance of including variably saturated conditions in constitutive equations as a unique damage-dependent poroelastic behavior was observed for wet and dry regions. The theoretical-based damage estimation corroborated by previous experimental observations illustrates that the rock strength is dominantly controlled by the time of exposure to water rather than the level of water saturation. Contrary to what was perceived, the results show that poroelastic and chemo-poroelastic responses do not coincide even in less reactive shales due to the time-dependent water-induced microstructural deterioration of the rock. The microstructural deterioration increases the storage and flow capacity in the water-saturated region giving rise to substantive spatio-temporal changes in matrix stresses. The research findings provide valuable insights to understand how poromechanics plays a role in causing water uptake in water-sensitive rocks and how such behavior is coupled with associated microstructural chemical damage.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3