The Analysis of the Fracturing Mechanism and Brittleness Characteristics of Anisotropic Shale Based on Finite-Discrete Element Method

Author:

Li HongtaoORCID,Chapman David N.,Faramarzi Asaad,Metje Nicole

Abstract

AbstractShale anisotropy characteristics have great effects on the mechanical behaviour of the rock. Understanding shale anisotropic behaviour is one of the key interests to several geo-engineering fields, including tunnel, nuclear waste disposal and hydraulic fracturing. This research adopted the finite discrete element method (FDEM) to create anisotropic shale models in ABAQUS. The FDEM models were calibrated using the mechanical values obtained from published laboratory tests on Longmaxi shale. The results show that the anisotropic features of shale significantly affect the brittleness and fracturing mechanism at the micro-crack level. The total fracture number in shale under the Uniaxial Compressive Strength (UCS) test is not only related to the brittleness of shale. It is also strongly dependent on the structure of the shale, which is sensitive to shale anisotropy. Two new brittleness indices, BIf and BICD, have been proposed in this paper. The expression for BIf directly incorporates the number of fractures formed inside of the rock, which provides a more accurate frac-ability using this brittleness index. It can be used to calculate the frac-ability of rocks in projects where there are concerns about fractures after excavation. Meanwhile, BICD links brittleness to the CD/UCS ratio in shale for the first time. BICD is easy to obtain in comparison to other brittleness indices because it is based on the Uniaxial Compressive Strength test only. In addition, it has been shown there is a relationship between tensile strength and the crack damage strength in shale. Based on this, an empirical relationship has been proposed to predict the tensile strength based on the Uniaxial Compressive Strength test.

Funder

School of engineering, University of Birmingham

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3