Automated Rock Quality Designation Using Convolutional Neural Networks

Author:

Alzubaidi FatimahORCID,Mostaghimi PeymanORCID,Si GuangyaoORCID,Swietojanski PawelORCID,Armstrong Ryan T.ORCID

Abstract

AbstractMineral and hydrocarbon exploration relies heavily on geological and geotechnical information extracted from drill cores. Traditional drill-core characterization is based purely on the subjective expertise of a geologist. New technologies can provide automatic mineral analysis and high-resolution drill core images in a non-destructive manner. However, automated rock mass characterization presents a significant challenge due to its lack of generalization and robustness. To date, the automated estimation of rock quality designation (RQD), a key parameter for rock mass classification, is based mostly on digital image processing techniques with significant user biases. Alternatively, we propose using computer vision and machine learning-based algorithms for drill core characterization using drill core images to determine the RQD. A convolutional neural network (CNN) is used to detect and classify intact and non-intact cores, and to filter out empty tray areas and non-rock objects present in the core trays. The model calculates the length of the detected intact cores and estimates the RQD. We train the CNN model with thousands of sandstone core images from different drill holes in South Australia. The proposed method is tested on 540 sandstone core rows and 90 limestone core rows (~ 1 m each), which produces average error rates of 2.58% and 3.17%, respectively.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3