Deep Palmprint Recognition with Alignment and Augmentation of Limited Training Samples

Author:

Brown DaneORCID,Bradshaw Karen

Abstract

AbstractThis paper builds upon a previously proposed automatic palmprint alignment and classification system. The proposed system was geared towards palmprints acquired from either contact or contactless sensors. It was robust to finger location and fist shape changes—accurately extracting the palmprints in images without fingers. An extension to this previous work includes comparisons of traditional and deep learning models, both with hyperparameter tuning. The proposed methods are compared with related verification systems and a detailed evaluation of open-set identification. The best results were yielded by a proposed Convolutional Neural Network, based on VGG-16, and outperforming tuned VGG-16 and Xception architectures. All deep learning algorithms are provided with augmented data, included in the tuning process, enabling significant accuracy gains. Highlights include near-zero and zero EER on IITD-Palmprint verification using one training sample and leave-one-out strategy, respectively. Therefore, the proposed palmprint system is practical as it is effective on data containing many and few training examples.

Funder

National Research Foundation

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable multi-layer COSFIRE filters robust to corruptions and boundary attack with application to retina and palmprint biometrics;Neural Computing and Applications;2024-08-03

2. Palm Vein Recognition Under Unconstrained and Weak-Cooperative Conditions;IEEE Transactions on Information Forensics and Security;2024

3. An Effective Analysis of Palm Print Detection Using SVM over ANN with Improved Accuracy;2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF);2023-01-05

4. An Evaluation of Hand-Based Algorithms for Sign Language Recognition;2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2022-08-04

5. Golf Swing Sequencing Using Computer Vision;Pattern Recognition and Image Analysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3