Semantic Attack on Disassociated Transaction Data

Author:

AlShuhail AsmaORCID,Shao Jianhua

Abstract

AbstractAccessing and sharing information, including personal data, has become easier and faster than ever because of the Internet. Therefore, businesses have started to take advantage of the availability of data by gathering, analysing, and utilising individuals’ data for various purposes, such as developing data-driven products and services that can help improve customer satisfaction and retention, and lead to better healthcare and well-being provisions. However, analysing these data freely may violate individuals’ privacy. This has prompted the development of protection methods that can deter potential privacy threats by anonymising data. Disassociation is one anonymisation approach used to protect transaction data. It works by dividing data into chunks to conceal sensitive links between the items in a transaction, but it does not account for semantic relationships that may exist among the items, which adversaries can exploit to reveal protected links. We show that our proposed de-anonymisation approach could break the privacy protection offered by the disassociation method by exploiting such semantic relationships. Our findings indicate that the disassociation method may not provide adequate protection for transactions: up to 60% of the disassociated items can be reassociated, thereby breaking the privacy of nearly 70% of the protected items. In this paper [an extension to our work reported in AlShuhail and Shao (Semantic attack on disassociated transactions. In: Proceedings of the 8th International Conference on information systems security and privacy-ICISSP, INSTICC. SciTePress, pp. 60–72, 2022)], we develop additional techniques to reconstruct transactions, with additional experiments to illustrate the impact of our attacking method.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3