PHDD: Corpus of Physical Health Data Disclosure on Twitter During COVID-19 Pandemic

Author:

Saniei RanaORCID,Rodríguez Doncel Víctor

Abstract

AbstractHealth-related information is considered as ‘highly sensitive’ by the European General Data Protection Regulations (GDPR) and determining whether a text document contains health-related information or not is of interest for both individuals and companies in a number of different scenarios. Although some efforts have been made to detect different categories of personal data in texts, including health information, the classification task by machines is still challenging. In this work, we aim to contribute to solving this challenge by building a corpus of tweets being shared in the current COVID-19 pandemic context. The corpus is called PHDD(Corpus of Physical Health Data Disclosure on Twitter During COVID-19 Pandemic) and contains 1,494 tweets which have been manually tagged by three taggers in three dimensions: health-sensitivity status, categories of health information, and subject of health history. Furthermore, a lightweight ontology called PTHI(Privacy Tags for Health Information), which reuses two other vocabularies, namely hl7 and dpv, is built to represent the corpus in a machine-readable format. The corpus is publicly available and can be used by NLP experts for implementation of techniques to detect sensitive health information in textual documents.

Funder

H2020 Marie Skłodowska-Curie Actions

Horizon 2020

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3