Towards Visual Semantics

Author:

Giunchiglia FaustoORCID,Erculiani Luca,Passerini Andrea

Abstract

AbstractLexical Semantics is concerned with how words encode mental representations of the world, i.e., concepts. We call this type of concepts, classification concepts. In this paper, we focus on Visual Semantics, namely, on how humans build concepts representing what they perceive visually. We call this second type of concepts, substance concepts. As shown in the paper, these two types of concepts are different and, furthermore, the mapping between them is many-to-many. In this paper we provide a theory and an algorithm for how to build substance concepts which are in a one-to-one correspondence with classifications concepts, thus paving the way to the seamless integration between natural language descriptions and visual perception. This work builds upon three main intuitions: (i) substance concepts are modeled as visual objects, namely, sequences of similar frames, as perceived in multiple encounters; (ii) substance concepts are organized into a visual subsumption hierarchy based on the notions of and ; (iii) the human feedback is exploited not to name objects, but, rather, to align the hierarchy of substance concepts with that of classification concepts. The learning algorithm is implemented for the base case of a hierarchy of depth two. The experiments, though preliminary, show that the algorithm manages to acquire the notions of and with reasonable accuracy, this despite seeing a small number of examples and receiving supervision on a fraction of them.

Funder

European Commission

Università degli Studi di Trento

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WiFi-based non-contact human presence detection technology;Scientific Reports;2024-02-13

2. Incremental Image Labeling Via Iterative Refinement;2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2023-06-04

3. Sustainable Tourism Development Two Types of Leverage: Innovative Tradition and Tourism for the Future;Advances in Science, Technology & Innovation;2023

4. Aligning Visual and Lexical Semantics;Lecture Notes in Computer Science;2023

5. CAPTION: Caption Analysis with Proposed Terms, Image of Objects, and Natural Language Processing;SN Computer Science;2022-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3